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It is pointed out that the usual (Gibbs) thermal equilibrium state in Minkowski 
spacetime is no longer a thermal equilibrium state for a uniformly accelerated 
observer. Similarly, the thermal equilibrium state in Kruskal spacetime is not a 
thermal state for a Schwarzschild observer. 

It is well known that a vacuum state in Minkowski  spacetime appears 
to be a thermal state for a uniformly accelerated Rindler observer  (Sciama, 
1981; Gibbons and Perry, 1978). Unruh gives a simple proof  (Unruh, 1976; 
Birrell and Davis, 1982). Under  the Rindler transformation 

tx= a - l  e ~ sh(axl) 
= a - l e ~  ch(a~q) (1) 

the line element is represented as 

ds 2 = e2"~(d.q2 - d~ 2) (2) 

where ae - ~  is the proper  acceleration o f  the Rindler observer  at {. For  a 
massless scalar field, Unruh obtains the Bogolubov  transformations 

{ b~ ) = [2 sh(~rto/a)]-U2[e~2ad~ ) + e-=~r~d(2)~] 

b~ ) [2 sh(Trmla)]-U2[e~OU~d~ ) + e - = ~ / ~ d ~ ]  
(3) 
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which provide a relation between a Minkowski vacuum state I O)M and a 
Rindler vacuum state 10)R, where 

d~)lO)M = d~)lO)M = 0 (4) 
b~)lO)R = b~)10>R = 0 

and to = IKI. In fact, b~ ) and b~ ) are annihilation operators of  the Rindler 
particles in the Rindler regions L and R, respectively (see Fig. 1). The 
Hermitian adjoint operators b~ )t and b~ )* are the respective creation operators 
of these particles. On the other hand, both d~ ~ and d~ ) are annihilation 
operators of  the Minkowski particles almost entirely concentrated in the 
Rindler regions L and R, respectively. And both d~ )* and d~ )t are creation 
operators of them (Unruh, 1976). 

From (3), we have 

b~ )* = [2 sh('rrto/a)]-l~[er~/2ad~)t + e-~r°a/2ad~)K] (5) 

So 

1 
M ( O I b ~ ) t b ~ ) l O ) M  - -  e 2~'0/~ - 1 (6) 

This means that a Minkowski  vacuum state is a thermal equilibrium state 
for a Rindler observer uniformly accelerated in the Rindler region L. For the 
region R, we  can obtain a similar result 

1 
M(0[ b~)tb~)10)M - eZ~r~a _ 1 

Now, we  are interested in what a uniformly accelerated observer in the 
Rindler regions R and L will  see when there exists a thermal equilibrium 

i ÷ 

I÷~ F • O~ I÷i i_ / onsttln t 

i- 
Fig. 1. Conformal diagram of the Rindler system. The regions R, L, F, and P are represented 

by diamond-shaped regions. ~ = const is the fimelike world line of a Rindler observer. 
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state in the Minkowski spacetime. For simplicity, let us still consider massless 
scalar particles. With the canonical ensemble, in the Rindler region L, we have 

(b~)tb~))M,i 3 = tr(e-fmb~)*b~:))/tr(e-f m) 

= el3F ~ e-13/~;[2 sh(,rrto/a)] -t 
i 

• [ e ~ l a M ( t ~ i l N ~ ) l ~ l l i )  M -I- e - ~ J a M ( t ~ i l ( l  -t- NI1)K)ItIJi)M] (7) 

where N~)x = d ~ d ~ [ ,  N~ ) = d~)*d~ ), and the partition function e -~F = 
tr(e-~n). Here I O,)M is a pure state in the Minkowski spacetime, containing 
particles N~ ) and N~ ) and being an eigenstate of the total Hamiltonian H 
with energy eigenvalue E~. 

Since the state is in thermal equilibrium for Minkowski (inertial) observ- 
ers, we have 

n~)x = ef3F E e-f3EiM(~JiIN(I)KI~i)M --  1 
i e ~ - 1 (8) 

n~) = ear ~i e-BEiM(t~ilN~)l~Ji)M = e 13'~ 1_ 1 (9) 

The normalization is 

So, we obtain 

ef3F E e-f~eiM(~il~i)M = 1 (I0) 
i 

e 21rt°la + e f~t~ 

(b~)*b~:))M'f~ = (e 2"~''/" - 1)(e 13~'- 1) (11) 

In the Rindler region R, we obtain similar result, 

e2~r~/a q- e[~ to 

(b~)*b~)>M'~ = (e 2~a  - 1)(e ~ - 1) (12) 

Equations (11) and (12) tell us that a thermal equilibrium state in the 
Minkowski spacetime will no longer be an ordinary thermal state for the 
uniformly accelerated Rindler observer, and it no longer satisfies the Planck 
distribution law. It will be a new quasi-thermal equilibrium state which is time 
independent and which is charactered by two quasi-temperature parameters. 

From (1 I), we know that the new state will go over to the ordinary 
Minkowski thermal equilibrium state 

1 
(b~)*b~))M.i 3 ---> e l 3 O ~ l  (13) 
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when the acceleration a of  the Rindler observer tends to zero. On the other 
hand, when the temperature of the thermal state in the Minkowski spacetime 
goes to zero, i.e., 

[3 ---) ~ 

the uniformly accelerated Rindler observer will see an ordinary Hawking-  
Unruh effect, 

1 
(b~)tb~'))M'~ --) e 27r~/a - 1 (14) 

Summarizing, we find a new quasi-thermal equilibrium state which is 
charactered by two quasi-temperature parameters. One of them is the initial 
temperature 1/13. Another is the Hawking-Unruh temperature T = a/2"rr. We 
can name the new state a "double temperature state." It should be pointed 
out that above conclusion is reliable in principle at least when I/[3 is not too 
high, although we do not consider the reaction of radiation to the curvature 
of spacetime. 

For the Schwarzschild spacetime manifold, we can get a similar conclu- 
sion. The Bogolubov transformations of  a massless scalar field between the 
creation and annihilation operators associated with the Kruskal particles and 
those associated with the Schwarzschild particles are 

bl I) = [2 sh('rrto/K)]-l/2[e~/2~dl 2) + e-~O'r2~d~l_tt ] 
bl z) [2 sh('~rto/K)]-UZ[e~J2~dti) + e-~"U2Kd~lt ] (15) 

where 

d~l)10)K = dl2)lO)~: = 0 

bll)10)s = bl2)t0)s = 0 (16) 

to = I/I 

K is the surface gravity of  the Schwarzschild black hole. 10)K and 10)s are 
the Kruskal vacuum state and the Schwarzschild vacuum state, respectively. 
Here, the Kruskal spacetime and the Schwarzschild spacetime are similar to 
the Minkowski spacetime and the Rindler spacetime, respectively. 

It is well known that a Kruskal vaccuum state is a thermal state in the 
Schwarzschild spacetime 

1 
K(01b/l)tblm)10)K = K(OlblZ)tbl2)lO)K -- e 2~'~/" -- 1 (17) 

where T = K/2"rr is the temperature of the black hole. Similar to equations 
(11) and (12), we can prove that an ordinary thermal equilibrium state whose 
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temperature is 1/[3 in the Kruskal spacetime will be a "double temperature 
state" in the Schwarzschild spacetime. We have 

e 2~rt°/K -k- e 130' 
(btt)*btl))K'~ = (bt2)*blZ))K'~ = (e 2~'~/" - 1)(e 13~' - 1) (18) 

Here, similar to the Minkowski case, we do not consider the reaction of 
radiation to the curvature of spacetime. We believe that the above conclusion 
is reliable in principle, at least when 1/[3 is not too high. 

The "double temperature state" phenomenon may be quite general in 
quantum field theory in curved spacetime. It is a kind of new quasi-thermal 
equilibrium state. Their energy spectra are not Planck spectra. They are 
characterized by two quasi-temperature parameters, unlike ordinary thermal 
equilibrium states, which are characterized by a single parameter called the 
temperature. The validity of the conclusion that the usual thermal state in 
Minkowski spacetime (or Kruskal spacetime) is no longer a thermal state for 
a Rindler (respectively Schwarzschild) observer can also be seen from the 
fact that the Kubo-Martin-Schwinger (KMS) (Kadanoff and Baym, 1962; 
Haag et al. ,  1967) condition which characterizes a thermal state is not pre- 
served under the passage from the Minkowski to the Rindler frame, or from 
the Kruskal to the Schwarzschild frame. 
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